Photophysics of fulvene under the non-resonant stark effect. Shaping the conical intersection seam.

نویسندگان

  • Sergi Ruiz-Barragan
  • Lluís Blancafort
چکیده

We introduce a mechanistic strategy to control the excited state lifetime of fulvene based on shaping the topography of an extended seam of intersection with the non-resonant dynamic Stark effect. Fulvene has a very short excited state lifetime due to an energetically accessible seam of intersection which lies along the methylene torsion coordinate, and the initial decay occurs at the seam segment around the planar conical intersection structure. We have followed a three-step approach to simulate the control. First, we have calculated the effect of a non-resonant electric field on the potential energy surface at the ab initio level, including the field in a self-consistent way. The relative energy of the planar segment of the seam is increased by the non-resonant field. In the second step we simulate the control carrying out MCTDH quantum dynamics propagations under a static non-resonant field to derive the main control mechanisms. At moderately intense fields (epsilon < or = 0.03 a.u.) the decay is faster as compared to the field free case because the vibrational overlap between the excited and ground state vibrational functions is increased. However, at more intense fields (epsilon = 0.04 a.u.) the planar conical intersection is energetically inaccessible and the decay occurs at a slower time scale, at the segment of the seam with more twisted geometries. In the third step, the control over the dynamics is exerted with a non-resonant dynamic field. The acceleration of the decay due to the improved vibrational overlap does not occur, but the decay can be made slower with a dynamic field of 0.08 a.u. The results show the viability of our approach to control the photophysics shaping the topology of the conical intersection seam, and they prove that the extended nature of the seam is crucial for simulating and understanding the control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene.

A conical intersection seam is behind the restriction of intramolecular rotation mechanism for aggregation induced emission in diphenyl dibenzofulvene (DPDBF). In solution, the seam is accessed through rotation around the exocyclic fulvene bond, leading to radiationless decay to the ground state. In the solid, the seam cannot be accessed because the torsion is blocked, and DPDBF becomes emissive.

متن کامل

The curvature of the conical intersection seam: an approximate second-order analysis.

We present a method for analyzing the curvature (second derivatives) of the conical intersection hyperline at an optimized critical point. Our method uses the projected Hessians of the degenerate states after elimination of the two branching space coordinates, and is equivalent to a frequency calculation on a single Born-Oppenheimer potential-energy surface. Based on the projected Hessians, we ...

متن کامل

Controlling the mechanism of fulvene S(1)/S(0) decay: switching off the stepwise population transfer.

Direct quantum dynamics simulations were performed to model the radiationless decay of the first excited state S(1) of fulvene. The full space of thirty normal mode nuclear coordinates was explicitly considered. By default, ultrafast internal conversion takes place centred on the higher-energy planar region of the S(1)/S(0) conical intersection seam, giving the stepwise population transfer char...

متن کامل

Quantum dynamics study of fulvene double bond photoisomerization: the role of intramolecular vibrational energy redistribution and excitation energy.

The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered ...

متن کامل

Benign decay vs. photolysis in the photophysics and photochemistry of 5-bromouracil. A computational study.

The excited state potential energy surface of 5-bromouracil has been studied with ab initio CASPT2//CASSCF calculations to rationalize the competition between the benign decay and the photolysis found experimentally. The surface is characterized by an extended region of degeneracy between S(1) and S(0). The access to this region has been studied with minimum energy path calculations from the FC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2013